
Darmstadt Centre for
Computational Engineering

Computational
Electromagnetics Group

Parallel Solution of Linear
Systems Arising in Domain
Decomposition Methods
Bachelor thesis in the field of study “Computational Engineering” by Magnus Dierking
Date of submission: 07.09.2022

1. Review: Prof. Dr. rer. nat. Sebastian Schöps
2. Review: Maximilian Nolte, M.Sc.
Darmstadt

Parallel Solution of Linear Systems Arising in Domain Decomposition Methods

Bachelor thesis in the field of study “Computational Engineering” by Magnus Dierking

1. Review: Prof. Dr. rer. nat. Sebastian Schöps
2. Review: Maximilian Nolte, M.Sc.

Date of submission: 07.09.2022

Darmstadt

Abstract

This bachelor thesis addresses the implementation of the dual-
primal isogeometric tearing and interconnecting algorithm into
the Boundary Element Method Based Engineering Library frame-
work, short Bembel. The first part reviews theoretical concepts
in order to solve a boundary value problem using a domain de-
composition approach. The global problem is split up into smaller
boundary value problems on independent subdomains and conti-
nuity constraints are introduced using Lagrange multipliers.
Afterwards, we review the implementation, paying special atten-
tion to local and global matrix structures that are exploited to
divide computations among parallel threads.
Numerical experiments with various geometries and settings are
performed in order to validate the implementation. The acquired
data shows convergence rates predicted by preceding theoretical
work of other authors, while also taking advantage of multithread-
ing.

3

Contents

1. Introduction 5
1.1. Motivation . 5
1.2. Structure of the Document . 6

2. Foundations 7
2.1. Sobolev Spaces . 7
2.2. Surface Partial Differential Equations . 8
2.3. Finite Element Methods . 9
2.4. Isogeometric Analysis . 10
2.5. Domain Decomposition . 13

2.5.1. The Stiffness Matrix . 14
2.5.2. The Jump Operator . 15
2.5.3. Mortar Method . 18

2.6. Saddle Point Formulation . 19

3. Dual-Primal IETI 20
3.1. Primal and Remaining Degrees of Freedom . 20
3.2. Essential Boundary Conditions . 21
3.3. Dual Problem . 23
3.4. Preconditioner . 24
3.5. IETI-DP Algorithm . 25

4. Implementation 26
4.1. BlockMatrix Struct . 26
4.2. Dirichlet Data . 27
4.3. Jump Operator Class . 27
4.4. Block Matrix Operator Class . 30
4.5. IETI-DP Routine . 33
4.6. Mortaring and Local Refinement . 34

5. Results 35
5.1. Quad Patch Geometry . 36
5.2. Quarter Sphere Geometry . 37
5.3. Sphere Geometry . 41

6. Final Remarks 44
6.1. Summary . 44
6.2. Further Work . 45

4

A. Non-Uniform-Rational-B-Splines 46

B. Data 47

5

1. Introduction

1.1. Motivation

Partial differential equations (PDEs) are essential in our modern understanding of physical processes such as
thermo-, fluid- or electrodynamics. Naturally, the study of numerical methods to find an approximate solution
for those PDEs is a central aspect of computer aided science and engineering. Among those techniques are
the finite element methods (FEM), which use a space discretization to approximate an unknown function
describing the desired solution [27, 35]. Complex structures require finer discretizations, which is why many
practically relevant applications lead to large sparse linear systems [32].

Solving these systems can require enormous computational resources and the performance of available
machines often is a limiting factor [7]. As clock speed began to stagnate, increasing performance became
almost entirely due to increasing the number of physical cores per processor [26, Sec. 1]. Hence, numerical
methods that take better advantage of parallelism are emerging. Among the most widely used approaches are
the so-called domain decomposition methods [9, 32]. Also referred to as substructuring methods, these tech-
niques solve the problem on the original domain by subdividing it into multiple sub-problems on subdomains
of the original structure. In the process, additional coupling constraints have to be introduced between those
subdomains. The application of domain decomposition to FEM has led to powerful solvers for large-scale
problems called finite element tearing and interconnecting (FETI) methods [9, 16, 18].

Constructing digital models of domains as parts of geometries relies on the technologies of computer aided
design (CAD), where an established standard is the usage of certain functions called basis splines (B-splines)
and non-uniform rational basis splines (NURBS) in the mathematical foundation [23, 30, 34].
Introduced by Hughes, Cottrell and Bazilevs [21] in 2005, isogeometric analysis (IGA) integrates FEM and
CAD into a single, unified process by employing the same functions that define the geometry as a basis for
numerical simulations. As NURBS provide an exact representation of the computational domain, the expensive
step of mesh generation can be avoided [21, Sec. 1].

Since the modeling of complex geometries is often achieved by combining multiple NURBS geometries,
the article [24] by Kleiss, Pechstein, Jüttler and Tomar proposes the combination of a FETI method and
IGA into the IsogEometric Tearing and Interconnecting (IETI) method. To be precise, the dual-primal FETI
(FETI-DP) method is chosen, resulting in IETI-DP. This method can then take advantage of the exact geometry
of IGA, while also employing the already well-developed solvers of FETI-DP.

The C++ code framework of Bembel, developed by Dölz, Harbrecht, Kurz, Multerer, Schöps and Wolf
[10] already provides OpenMP parallelization [29] with geometry evaluation processes. In 2021, an operator
based on an isogeometric mortar method [5] was integrated into the framework by Nolte [28], which can
be used to impose weak continuity constraints between decoupled subdomains in a domain decomposition

6

context. The aim of this bachelor thesis is to implement the IETI-DP algorithm proposed by [24] into Bembel
and combine it with the implemented mortar method. The idea is to provide a solver that takes advantage
of the parallelism of domain decomposition by distributing subdomain-wise computations among multiple
threads. Special emphasis is placed on the matrix structures that are exploited during the implementation in
order to realize the parallel solution of the linear system resulting from the discretization.

1.2. Structure of the Document

After the second chapter establishes a theoretical basis for the analytical problem and how to solve PDEs
numerically, a discretized problem can be formulated. In the following Chapter 3, the algebraic steps to deduce
a dual problem are reproduced, which leads to the proposed IETI-DP algorithm. Chapter 4 then summarizes
the most important facets regarding the implementation of this algorithm into the Bembel framework. In
Chapter 5, the implementation is used to analyze geometries of increasing complexity. In this step, convergence
rates and the runtime advantages of the parallel approach are investigated. The closing Chapter 6 ends this
thesis with a summary and an outlook with possible future extensions and fixes.

7

2. Foundations

In this chapter, we introduce the theoretical background for this thesis. After defining the needed function
spaces and differential operators for the analysis, a given problem is discretized using a finite element method
and the IGA setting is introduced. A domain decomposition approach then yields a linear system of decoupled
subproblems. Two methods for coupling the resulting subdomains are presented and the ensuing problem’s
structure is stated. In the notation used, vectors and matrices are written in bold with small and capital letters
respectively, e.g. b and A.

2.1. Sobolev Spaces

In this thesis, we are considering domains with special conditions regarding the smoothness of their boundary.
Those domains are referred to as Lipschitz domains and are used without further definition, see [27, Def. 3.1]
for details. Let Ω ⊂ Rd, d = 2, 3 be an open Lipschitz domain.

Definition 2.1 (Hilbert Space, [15, A. 3]). A vector space X equipped with an inner product (·, ·)X and an
induced norm given by

||u||X :=
√︁
(u, u)X , u ∈ X (2.1)

is a Hilbert Space if it is complete with respect to || · ||X .

Using this definition, the space L2(Ω) of functions u that are square-integrable on the domain Ω can be
equipped with the inner product

(u, v)L2(Ω) =

∫︂
Ω
u(xxx)v(xxx) dx , (2.2)

for all functions u, v : Ω→ R with an induced norm

||u||L2(Ω) =
√︂
(u, u)L2(Ω) . (2.3)

With this, L2(Ω) is a Hilbert space.

Definition 2.2 (Weak Derivative, [4, Def. 1.1]). The function u ∈ L2(Ω) has the weak derivative v = ∂αu, if
v ∈ L2(Ω) and

(Φ, v)L2(Ω) = (−1)|α|(∂αΦ, u)L2(Ω) , ∀Φ ∈ C∞
0 (Ω) . (2.4)

Here, C∞
0 (Ω) denotes the space of smooth functions over Ω with a compact support strictly included in Ω. The

concept of weak derivatives can be transferred to other differential operators, e.g. v ∈ L2(Ω) is the divergence
of the d-dimensional function ννν ∈ (L2(Ω))

d in a weak sense, if (Φ, v)L2(Ω) = (Φ,∇ · ννν)L2(Ω) = −(∇Φ, ννν)L2(Ω)

for all functions Φ ∈ C∞
0 (Ω). In this case, the right-hand side is obtained by applying the divergence theorem.

8

From now on, a multi-index notation is used. A multi-index is a tuple ααα = (α1, . . . , αd) ∈ Nd. We define
|ααα| =

∑︁
1≤j≤d αj and for any sufficiently differentiable function Dαααf := ∂α1

x1
. . . ∂αd

xd
f .

Definition 2.3 (Sobolev Spaces, [25, p. 73ff]). For integers m ≥ 0 the Sobolev space Hm(Ω) is a Hilbert space,
which denotes all functions u ∈ L2(Ω) that possess weak derivatives for all |ααα| ≤ m. In Hm(Ω) with m ≥ 1, an
inner product with corresponding norm is induced via

(u, v)Hm(Ω) := (u, v)Hm−1(Ω) +
∑︂

|ααα|=m

(Dαααu,Dαααv)L2(Ω) , (2.5)

with

||u||2Hm(Ω) := ||u||
2
Hm−1(Ω) +

∑︂
|ααα|=m

||Dαααu||2L2(Ω) , (2.6)

and H0(Ω) = L2(Ω).

With this definition H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) . . . applies. A PDE with given boundary constraints can be
formulated as a minimization problem, a so-called variational problem. The derivation is not part of this work,
please refer to [4, Sec. 2] for details. Solving this variational problem in the Sobolev spaces defined above
yields a PDE’s weak solutions [4, Def. 2.8].

2.2. Surface Partial Differential Equations

In this thesis, we are dealing with PDEs that are stated on a curved surface Γ embedded in R3. We therefore
have to introduce differential operators that incorporate the curvature.
Determine quantities on such a surface, for example the distance between points, can be achieved by doing
measurements on tangent vectors. In order to express a direction, one has to take inner products with these
tangent vectors. The euclidean inner product is not suitable in this case, as it does not take the surface’s
curvature into account. As it is derived by [22, Sec. 1.4], the needed information in a point xxx ∈ Γ is encoded
by a smoothly-varying positive-definite bilinear form, the so-called Riemannian metric

gxxx(a,b) := aTG(xxx)b , a,b ∈ R2 , (2.7)

where G : R2 → R2×2 is referred to as the first fundamental form. Using this, one can also state differential
operators that are defined on curved surfaces.

Definition 2.4 (Surface Differential Operators, [27, Sec. 3.4]). Suppose xxx ∈ Γ can be parameterized using
(u1, u2) ∈ R2 via

xxx =
(︁
x1(u1, u2), x2(u1, u2), x3(u1, u2)

)︁T
. (2.8)

Using the entries gij of the inverse of G, the surface gradient gradgradgradΓp of a function p ∈ H1(Γ) is defined as

gradgradgradΓp =
2∑︂

i=1

2∑︂
j=1

gij
∂p

∂ui

∂xxx

∂uj
, (2.9)

9

while the divergence of a function ννν = (ν1, ν2) ∈ (H1(Γ))3 can be expressed via

divΓ ννν =
1√︁

det(G)

{︂ ∂

∂u1

(︁√︁
det(G)ν1

)︁
+

∂

∂u2
(
√︁
det(G)ν2)

}︂
, (2.10)

where
√︁
det(GGG) can be understood as a surface measure for the infinitesimal surface elements.

At this point, we can define the Laplace-Beltrami operator ∆Γ = divΓgradgradgradΓ and state the boundary value
problem.

Problem 2.5 (Laplace-Beltrami on Open Surfaces, [12, Sec. 3.1]). For a given f ∈ L2(Γ) and a sufficiently
smooth function g find u ∈ H1(Γ), such that

−∆Γu = f , on Γ , (2.11)
u = g , at ∂Γ . (2.12)

The variational formulation of this partial differential equation reads:
With the positive bilinear form a and the linear form l

a(u, v) :=

∫︂
Γ
gradgradgradΓu · gradgradgradΓv dσ , (2.13)

l(v) :=

∫︂
Γ
fv dσ , (2.14)

find u ∈ H1(Γ), such that

a(u, v) = l(v) , ∀v ∈ H1(Γ) . (2.15)

Solving such problems numerically on a computer requires a formulation that can be represented by a finite
amount of numerical values. This requires a discretization of the continuous problem.

2.3. Finite Element Methods

Galerkin Discretization

For the numerical solution of an elliptical Dirichlet boundary value problem such as Problem 2.5, [4, Sec. 2.4]
states that one can find an approximation of the solution in a finite-dimensional, discrete subspace Sh of
H1(Γ).
Let {Vh,1, . . . , Vh,η} be the η-dimensional basis of Sh. The function uh is a solution in Sh, if

a(uh, Vh,i) = (f, Vh,i) , ∀Vh,i ∈ Sh . (2.16)

In this context, Sh is referred to as the space of test functions. Writing the desired solution with the same basis
as Sh in the form of

uh =

η∑︂
k=1

ϕkVh,k , (2.17)

10

and substituting in equation (2.16) yields the linear problem

η∑︂
k=1

a(Vh,k, Vh,i)ϕk = (f, Vh,i) , ∀Vh,i ∈ Sh . (2.18)

In the second context of (2.17), Sh is denominated the space of ansatz functions. Using αi,k = a(Vh,k, Vh,i)
as coefficients of a matrix A ∈ Rη×η, βi = (f, Vh,i) as entries of a vector b ∈ Rη and Φ = (Φ1, . . . ,Φη)

T , the
above equations form a system

AΦ = b . (2.19)

After solving this linear system, one can obtain the approximation uh to the solution u of the continuous
problem using (2.17). [4, Sec. 2.4.2] derives that the accuracy of uh substantially depends on the chosen
space Sh ⊂ H1(Γ).

2.4. Isogeometric Analysis

In practice, the domain Γ is often available in the form of a CAD representation. The fundamental idea of
isogeometric analysis is to use basis functions that are able to exactly model the underlying geometry in a CAD
context to also serve as the basis for the solution space of a finite element analysis [21]. The used functions
are defined in the following way.

B-Spline Basis

Definition 2.6 (B-Spline Basis, [30, Sec. 2]). Let Ξ = {ξ1, . . . , ξn+p+1} with n, p ∈ N and ξk ∈ R be a
non-decreasing (ξk ≤ ξk+1) sequence for every k ∈ [1, . . . , n+ p+ 1]. The vector Ξ is termed knot vector and
the ξk knots. For the remainder of this thesis it is assumed that the knot vector has the form

Ξ = {ξ1 = . . . = ξp+1⏞ ⏟⏟ ⏞
=0

< ξp+2 ≤ . . . < ξn+1 = . . . = ξn+p+1⏞ ⏟⏟ ⏞
=1

} ⊂ [0, 1] , (2.20)

which we, in accordance to a variety of literature on the subject, refer to as an open knot vector. Furthermore,
we also assume that the multiplicity of knots ξj with j = p + 2, . . . , n is at most p. Having specified a knot
vector and a degree p, one can compute a set of n B-spline basis functions.
A B-spline basis function N

(p)
i,Ξ of degree p, related to the knot vector Ξ is defined recursively for p > 0 as

N
(p)
i,Ξ (x) :=

x− ξi
ξi+p − ξi

N
(p−1)
i,Ξ (x) +

ξi+p+1 − x

ξi+p+1 − ξi+1
N

(p−1)
i+1,Ξ (x) , (2.21)

and if p = 0 as

N
(0)
i,Ξ (x) :=

{︄
1 , if ξi ≤ x < ξi+1 ,

0 , otherwise ,
(2.22)

for all i with 1 ≤ i < n+ 1.
Note that fractions with zero denominators are considered to be zero [30, p. 51].

11

Refinement in the form of adding basis functions on the unit interval is achieved by knot insertion.

Definition 2.7 (Refinement, [6, Sec. 2.1.3]). Using the same degree p as before, introducing an extended
knot vector with an additional knot in the form of

Ξ̄ := Ξ ∪ {ξ̄} , (2.23)

and assuming that ξp+1 < ξ̄ < ξn+1 and ξ̄ /∈ Ξ results in a new set of n+1 B-spline basis functions. Non-empty
intervals [ξk, ξk+1] are called elements.

The effect can be retraced by considering Figure 2.1b and Figure 2.1c.

0 0.25 0.5 0.75 1
0

0.5

1

(a) p = 1, Ξ = {0, 0, 1
4
, 1
2
, 3
4
, 1, 1}.

0 1
0

0.5

1

(b) p = 2, Ξ = {0, 0, 0, 1, 1, 1}.

0 0.5 1
0

0.5

1

(c) p = 2, Ξ = {0, 0, 0, 1
2
, 1, 1, 1}.

Figure 2.1.: B-spline basis for p = 1, 2 and different open knot vectors.

For any arbitrary element, the sum of all B-spline basis functions always yields a constant function with value
one [30, P. 2.4]. This property is called partition of unity.

Definition 2.8 (B-Spline Space, [6, Sec. 3.2]). The B-spline space Sp,Ξ is the space spanned by the B-splines

Sp(Ξ) :=
{︂ n∑︂

i=1

ciN
(p)
i,Ξ (x) , ci ∈ R

}︂
, (2.24)

where n denotes the dimension of the space.

12

The one-dimensional definitions above can be extended to a multivariate setting by using a so-called tensor-
product approach. In this thesis, we focus on the bivariate setting.

Definition 2.9 (Tensor-Product B-Splines, [6, Sec. 3.5]). Given two knot vectors

Ξ := [ξ1 ≤ . . . ≤ ξn1+p1+1] , Υ := [υ1 ≤ . . . ≤ υn2+p2+1] , (2.25)

one can construct a two-dimensional tensor-product B-spline surface via

f(x1, x2) :=

n1∑︂
i=1

n2∑︂
j=1

ci,jN
(p1)
i,Ξ (x1)N

(p2)
j,Υ (x2) , ci,j ∈ R , (2.26)

which can be seen as a surface in R3 for (x1, x2) ∈ [ξp1+1, ξn1+1]× [υp2+1, υn2+1].

0

1

0.5

x2

1

1

x1
0 0

1

x2

0 0

0

0.5

1

1

x1

x2
x1

1

0

1

0.5

1

0 0

1

x2

0 0

0

0.5

1

x1

1

1

x2

0 0

0

1

0.5

1

x1

1

x2

0 0

0

0.5

1

1

x1

1

x2

0 0

0

0.5

1

1

x1

1

x2

0 0

0

1

x1

0.5

1

0

1

x2
x1

1

0.5

1

0 0

Figure 2.2.: Exemplary bivariate tensor-product B-spline basis functions.

For instance, choosing the B-spline basis of Figure 2.1b for both dimensions yields the nine tensor-product
basis functions shown in Figure 2.2. Note that in general the (x1, x2) domain of this mapping is a rectangle.
We limit this work to always using the same basis for both dimensions, yielding n1 = n2 = n and n2 basis
functions. This results in a quadratic domain, which is written as □ := (0, 1)2 for the rest of this thesis.
The tensor-product construction (2.26) defines the tensor-product B-spline space

Sp1,p2(Ξ,Υ) . (2.27)

13

As noted before, we use p1 = p2 = p and Ξ = Υ and therefore denote the space on □ with

Sp,Ξ(□) := Sp,p(Ξ,Ξ) . (2.28)

In the two-dimensional case, the non-empty sets [ξp+1, ξn+1]× [ξp+1, ξn+1] are also referred to as elements.
In IGA, an extension of B-splines in the form of NURBS is utilized as an ansatz space for a finite element
analysis. Some additional information can be found in Appendix A.
In classical FEM, there exists a concept of using the same basis functions that are used to approximate the
solution to also approximate the geometry, which is called isoparametric concept [8, Sec. 3.1]. IGA chooses
NURBS, which are the standard in most modern CAD systems [6, Sec. 3.6] as basis functions. They allow an
exact representation of the geometry while also possessing desirable properties for approximating solutions,
effecively reversing the isoparametric concept [8, Sec. 3.1]. In our case, because of the chosen discretization
of Section 2.3, the NURBS are additionally used as test functions.

2.5. Domain Decomposition

In practice, most geometries are not efficiently representable by a single NURBS construct [8, Sec. 2.3]. This
is crucial when the geometry’s topology differs from the cube topology of □, but also varying materials or
physical models on different parts of the domain can be problematic [8, Sec. 2.3]. This leads to the fact that,
especially when dealing with complex structures, the combination of multiple surfaces leads to much more
flexibility when constructing a geometry [34, Sec. 4].
This offers a natural domain decomposition approach for solving a problem on such geometries, which has
great potential for parallel computing.

Multi-Patch Geometry Mappings

Definition 2.10 (Patch, [36, Def. 3.6]). We define a patch Γ to be the image of □ under a mapping
FFF : □ → Γ ⊂ R3. Let Ω ∈ R3 be a Lipschitz domain and Γ = ∂Ω. In this context, □ is referred to as the
parameter domain and Γ as the physical domain. Now assume that the physical domain Γ is represented by N
single-patch geometry mappings {Γi}0≤i<N , N ∈ R, given by a family of mappings

{FFF i : □→ Γi}0≤i<N , (2.29)

called parametrisation.

One possible approach for such mappings are the NURBS in the form

FFF (□) :=

n1∑︂
i=1

n2∑︂
j=1

Ci,j

wi,jN
(p1)
i,Ξ (x1)N

(p2)
j,Υ (x2)∑︁n1

s=1

∑︁n2
r=1ws,rN

(p1)
s,Ξ (x1)N

(p2)
r,Υ (x2)

, wi,j > 0, Ci,j ∈ Rd . (2.30)

Bembel uses the information of the mapping and derives the Jacobian in order to compute the integrals for
the variational formulation in Section 2.5 in the parameter domain □ [11, Sec. 3.2]. This integrates the
information needed by the operators in Section 2.4 into the bilinear form. The space of test- and ansatz
functions is therefore defined on □ with the B-splines and all the calculations are executed there [36, Def. 3.9].

14

We require the images of □ of all FFF i to be disjoint, meaning that Γi ∩ Γj = ∅ for i ̸= j. The mappings in
equation (2.29) are utilized in the transformations

ιi(f) = f ◦FFF i , (2.31)

which enables us to define patch-wise B-spline spaces

Sp,Ξi(Γi) := {f : ιi(f) ∈ Sp,Ξi(□)} . (2.32)

Collecting those spaces for all patches leads to the patch-wise defined B-spline space

Vh,p :=
∏︂

0≤i<N

Sp,Ξi(Γi) , (2.33)

where Ξi denotes the knot vector of the patch Γi. By definition, this space is discontinuous across patch
boundaries. In this work, we consider patch-wise uniform knot vectors, meaning that ξk+1 − ξk = hi for every
k ∈ [p+ 1, . . . , n], where hi is referred to as the element width in the reference domain. Using Definition 2.7,
we define a patch-wise refinement level mi ≥ 0, which denotes that the associated knot vector possesses 2mi

elements. The concept is outlined in Figure 2.3.

→ →

mi = 0 mi = 1 mi = 2

Figure 2.3.: Elements of the parameter domain of the patch Γi with increasing refinement level.

From now on, we denote the set of all double-indices (i, j) of basis functions by

R =
{︁
(i, j) : i ∈ {1, . . . , n}, j ∈ {1, . . . , n}

}︁
, (2.34)

and collapse the double index into one multi-index k. A subset containing all double indices related to
the patch Γi is written as R(i). Furthermore, patch indices are also used as superscripts on matrices, while
subscripts are applied to vectors or coefficients.

2.5.1. The Stiffness Matrix

The space defined above enables the approach in Section 2.3 to be used with the variational formulation of
Problem 2.5. Using the B-spline basis functions φk,i, φl,i ∈ Sp,Ξi(Γi), representing the desired solution on □
via

uh,i =
∑︂

k∈R(i)

uk,iφk,i , (2.35)

and using

A(i) :=
(︁
a(φk,i, φl,i)

)︁
,

fi :=
(︁
l(φk,i)

)︁T
, ∀k, l ∈ R(i) , (2.36)

15

a linear System

A(i)ui = fi , (2.37)

as in (2.19) is obtained on every patch i = 0, . . . , N − 1 of the domain. The vector ui therefore contains all
the coefficients uk,i for the chosen tensor-product B-spline space that is used as an ansatz space for the desired
solution in the parameter domain of patch Γi. These entries are also referred to as degrees of freedom (DOFs).
In this context, f is called the load vector and A the stiffness matrix.
Collecting all the local stiffness matrices and load vectors as well as concatenating a global solution vector u
for the space Vh,p out of the single-patch ui vectors results in

A =

⎛⎜⎝A(0) 0
. . .

0 A(N−1)

⎞⎟⎠
⎛⎜⎝ u0

...
uN−1

⎞⎟⎠ =

⎛⎜⎝ f0
...

fN−1

⎞⎟⎠ . (2.38)

With the global stiffness matrix A acquired above, there are no continuity constraints between the patches
themselves as well as between the patches and the global boundary. The kernel of A is therefore non-trivial,
as it includes all patch-wise constant functions. The system (2.38) does not have a unique solution.

2.5.2. The Jump Operator

Since the spaces in (2.33) are in general discontinuous across the interfaces between the subdomains,
continuity conditions have to be imposed separately. In order to do that, the authors of [24] propose the
following operator.
We define an interface ei,j := Γi ∩ Γj between two patches Γi and Γj with i ̸= j as an interface edge, if it
contains more than a point. If it only consists of one point it is called an interface vertex.
Collecting all the interface-tupels of all interfaces that are non-empty and eliminating duplicates by only
keeping those in which the first index is the smaller one yields the index set

C = {(i, j) ∈ CΓ : i < j} , (2.39)

where each interface and vertex is only represented once. For each pair (i, j) ∈ C, we say that Γi is the primary
domain and Γj is the secondary domain.
With this set, one can collect all the indices of the basis functions in Γi whose support intersects the interface
ei,j in

B(i, j) = {k ∈ R(i) : suppφk,i ∩ ei,j ̸= ∅} , (2.40)

as well as all the indices of the basis functions whose support intersects the global boundary ∂Γ in

D(i) = {k ∈ R(i) : suppφk,i ∩ ei,D ̸= ∅} , (2.41)

with ei,D = ∂Γi ∩ ∂Γ.
When using this operator, we only consider the setting of fully matching subdomains, meaning that the
following two conditions must be fulfilled:

(i) The edge ei,j is the image of an entire edge of the respective parameter domains.

16

(ii) For each multi-index k ∈ B(i, j), there must be a unique multi-index l ∈ B(j, i), such that

φk,i

⃓⃓⃓
ei,j

= φl,j

⃓⃓⃓
ei,j

, (2.42)

meaning that for a basis function on the edge of patch Γi there must be a unique associated basis function
on the patch Γj that is connected to Γi via this edge.

This fully matching setting in combination with the tensor-product structure of the basis functions can be
exploited to collect the DOFs associated with an index set. The only information one has to know is which
side of the parameter domain defines the interface.

(0, 0) (1, 0)

(0, 1) (1, 1)

Edge 0

Edge 1

Edge 2

Edge 3

x2

x1
0 1 2

3 4 5

6 7 8

Figure 2.4.: Numbering of DOFs and edges for a single patch in the parameter domain □.

In order to clarify the numbering, consider the parameter domain □ with the B-spline basis of Figure 2.1b. As
stated before, this thesis only takes tensor-product surfaces with equal degree and knot vectors into account,
leading to nine DOFs per patch in this example case. As can be seen in Figure 2.4, the DOFs are numbered
canonically. Respect that the indicated DOFs are the same ones that were shown in Figure 2.2. The edges of a
patch are enumerated counter-clockwise, signalized by the coloring in Figure 2.4.
The total number of continuity constraints resulting from (2.40) and (2.41) is designated as J and the total
number of DOFs from all patches as N . Using this, the jump operator B ∈ {−1, 0, 1}J×N is defined as

B : Vh,p → RJ , (2.43)
(Bu)k,(i,j) = uk,i − ul,j , (2.44)
(Bu)k,(i,D) = uk,i . (2.45)

This results in a matrix for the linear operator B, where a row with exactly one 1 and one −1 indicates a
coupling condition between two patches and a row with a single 1 a condition for the global boundary.

17

(0, 0) (1, 0)

(0, 1) (1, 1)

x2

x1
0 1 2

3 4 5

6 7 8

(a) Numbering scheme on every patch
for reference.

Γ0 Γ1

Γ2

Γ3

(b) Exemplary multi-patch geometry.

0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(c) Resulting structure of the jump operator.

Figure 2.5.: Assembly of a jump operator without boundary conditions for an exemplary geometry.

In order to outline the jump operators global structure, consider a simple setting of four patches as in
Figure 2.5b without incorporating the conditions on the global boundary. For this example, also assume that
the patches are not twisted against each other, meaning the lower left DOF is always the one with the smallest
index on the patch. With three B-spline basis functions in every direction on every patch, this yields 32 · 4 = 36
DOFs. As can be seen in the exemplary geometry, three edge couplings with three DOFs each, as well as two
additional vertex couplings need to be taken into account. This leads to J = 3 · 3 + 2 · 1 = 11 constraints and
a 11× 36 jump operator. Again, outside of this example additional conditions for the global boundary ∂Γ are
indispensable.
The resulting matrix for the jump operator takes on the structure in Figure 2.5c, with two colored blocks
aligned horizontally indicating one interface coupling. The block with positive entries accounts for the DOFs
of the primary domain, while the block with negative entries does so for the secondary one. The red markings
highlight the couplings of subdomain vertices. All entries outside of the colored blocks are zero.
For C0-continuity and the incorporation of Dirichlet boundary conditions, the resulting system has the form

Bu = b , (2.46)

where the entries of the vector b ∈ RJ are zero when corresponding to an interface condition and equal to a
coefficient when corresponding to a boundary condition.

18

Regarding Dirichlet boundary conditions, the work of [24] assumes that the prescribed Dirichlet data gD is
such that there exists a ĝ ∈ Vh,p : gD = ĝ

⃓⃓
∂Γ
. Therefore, the subsets of continuous functions

V0,h,p = {v ∈ Vh,p : v
⃓⃓
∂Γ

= 0} , (2.47)
Vg,h,p = ĝ + Vh,p = {v ∈ Vh,p : v

⃓⃓
∂Γ

= gD} . (2.48)

in Vh,p are defined. In the non-homogeneous case, the authors of [24] assume that the given function on the
boundary can be approximate with the used B-spline basis via

gD
⃓⃓
ēi,D

=
∑︂

k∈D(i)

gk,iφk

⃓⃓
ēi,D

, (2.49)

with real-valued coefficients gk,i. This can be incorporated in the jump operator by requiring

uk,i = gk,i , (2.50)

on all edges associated with the global boundary. Adding these coefficients into the vector b virtually
corresponds to coupling the DOFs with a virtual neighbour subdomain. If only homogeneous Dirichlet
conditions are considered, b is a zero vector.

2.5.3. Mortar Method

The jump operator defined above imposes C0-continuity by matching the DOF between two patches of the
boundary along their respective edges or vertices. An alternative approach for coupling the subdomains is
offered by the mortar method, which was originally published for FEM by Maday et al. in 1989. In 2021,
the isogeometric mortar method based on the work of Brivadis et al. [5] was implemented into the Bembel
framework by Nolte [28].
The method imposes continuity along interfaces in a weak sense by using an m-dimensional space Mh of
discrete Lagrange multipliers. This enables the formulation of the mortar linear form

b(vh, µh) :=
L∑︂
l=1

∫︂
el

[vh]λhds, vh ∈ Vh,p , λh ∈Mh , (2.51)

with [vh]|el = vh|Γi(l)
− vh|Γj(l)

being the basis function’s jump from primal to secondary patch on the l-th edge.
This leads to the adapted variational formulation

a(uh, vh) + b(vh, λh) = l(vh) ∀vh ∈ Vh,p , (2.52)
b(uh, µh) = (g , µh) ∀µh ∈Mh . (2.53)

If λh ∈Mh is represented using basis functions via

λh =

m∑︂
i=1

λh,iNi , (2.54)

and with the spaces from (2.33), the constraints can be expressed in a matrix B ∈ Rm×N

B :=
(︁
b(Nj , φi)

)︁
1≤j≤m,1≤i≤N . (2.55)

The corresponding right-hand side b ∈ Rm for this linear operator is constructed via

b := (⟨g, µ1⟩, . . . , ⟨g, µm⟩)T , (2.56)

which again is a zero vector in the case of homogeneous Dirichlet data. The resulting mortar operator can be
used as an alternative to the jump operator. From now on, we assume this operator as given. For additional
information on the analytical background and the implementation, please refer to the given sources.

19

2.6. Saddle Point Formulation

After assembling the matrices above, the discretized problem can be formulated as a saddle point problem [24,
Sec. 4.2]. Assume the given load vector

f :=
(︁
fT0 . . . fTN−1

)︁T
, (2.57)

the stiffness matrix A from Section 2.5 and one of the coupling operators B with corresponding right-hand
side b defined above. From now on, when a specific coupling operator is meant, the subscripts J and M are
used.
For the jump operator this yields the following.

Problem 2.11 (Saddle Point Problem with Jump Operator). Using this, find u ∈ Vg,h,p with the vector
representation u and Lagrange multipliers λ ∈ RJ , such that(︃

A BT
J

BJ 0

)︃(︃
u
λ

)︃
=

(︃
f
bJ

)︃
. (2.58)

In the case of homogeneous boundary conditions, Vg,h,p is replaced by u ∈ V0,h,p and bJ is a zero vector.

Instead using the provided mortar operator to enforce the constraints, the following problem applies.

Problem 2.12 (Saddle Point Problem with Mortar Operator). Using this, find u ∈ Vh,p with the vector
representation u and Lagrange multipliers λ ∈ Rm, such that(︃

A BT
M

BM 0

)︃(︃
u
λ

)︃
=

(︃
f
bM

)︃
. (2.59)

In the case of homogeneous boundary conditions, bM is a zero vector.

20

3. Dual-Primal IETI

In this chapter, we reproduce the linear algebra operations done by [24] in order to state an algorithm for
the IETI-DP method and introduce the setting for this thesis. Information on the global boundary as well as
continuity constraints are added and the matrices in Section 2.5 then undergo restructuring. In the process,
boundary data is directly incorporated into the stiffness matrix with the aim of sustaining a solvable dual
system. The size of this system is determined by the number of constraints of the used coupling operator,
which is significantly smaller than the initial saddle point problem. The solution of the dual system can then
be used to find the DOFs of the original problem.
Part of the restructuring and part of the solving for the DOFs happens independently for each subdomain,
which can be exploited later by parallelizing parts of the algorithm. In the process, a preconditioner for the
dual system is also stated. This whole chapter therefore sticks closely to the introduction stated by [24].

3.1. Primal and Remaining Degrees of Freedom

As stated in Section 2.4, we only consider open knot vectors. In combination with the partition of unity
property, this leads to the fact that at every vertex of the parameter domain □, only one basis function has the
value 1, while the support of all the others vanishes. This can be validated with (2.21) or with Figure 2.1.
In Figure 2.5 this would be DOF 0, 2, 6 and 8 according to the defined scheme. Since these DOFs can be
distinguished from the others, they are designated as primal DOFs and all others are referred to as remaining
DOFs. To indicate this partition, the subscripts P and R are used respectively.
All previously defined vectors and matrices apart from λ and b can be sorted according to this classification.
This is achieved by collecting all the primal DOFs that are associated with a common point in the physical
domain and fixing a global numbering system. The solution vector

˜︁u =
(︁˜︁uT

P ˜︁uT
R,0 . . . ˜︁uT

R,N−1

)︁T
, (3.1)

is constructed by collecting the primal DOFs in the vector ˜︁uP and then concatenating it with all the patch-wise
remaining DOFs. When using the jump operator, the desired solution is associated with a subspace of Vh,p,
which is defined as

˜︂Wh,p = {u ∈ Vh,p : u is continuous at all vertices} . (3.2)

The mortar operator imposes the continuity in a weak sense and therefore pursues a solution in Vh,p. Using
the same procedure for the respective constraint operator, one can obtain the operator ˜︁B with the structure

˜︁B =
(︂˜︁BP

˜︁B(0)
R . . . ˜︁B(N−1)

R

)︂
. (3.3)

21

Regarding the stiffness matrix, this classification can be applied to each local subdomain stiffness matrix.
Assembling the global stiffness matrix from the local contributions yields the structure

˜︁A =

(︄˜︁APP
˜︁APR˜︁ARP
˜︁ARR

)︄
, (3.4)

with the corresponding global load vector

˜︁f = (︄˜︁fP˜︁fR
)︄
. (3.5)

It is important to note that only for ˜︁ARR the block-diagonal form shown in (2.38) is preserved. As it is done
at the end of Section 2.5, the problem can be formulated as a saddle point problem:

Problem 3.1 (Dual-Primal Formulation). Find u ∈ ˜︂Wh,p, represented by ũ as in (3.1) and Lagrange multipliers
λ ∈ RJ , such that (︄ ˜︁A ˜︁BT

J˜︁BJ 0

)︄(︃˜︁u
λ

)︃
=

(︃ ˜︁f
bJ

)︃
. (3.6)

When using the operator BM with right-hand side bM, the space ˜︂Wh,p is replaced by Vh,p and λ ∈ Rm.

At this point, the global stiffness matrix is still singular, as we only incorporated the continuity between the
patches via the constraint operators, effectively only rearranging the stiffness matrix.

3.2. Essential Boundary Conditions

In order to obtain a regular matrix, essential boundary conditions have to be incorporated. To achieve that, a
further distinction of the primal DOFs defined above has to be undertaken.

∂Γ

Figure 3.1.: Categorization of DOFs for a four-patch geometry.

22

The primal DOFs that are associated with the global boundary ∂Γ are labeled essential primal DOFs and those
in the interior of our domain Ω floating primal DOFs. This is indicated again by using subscripts, namely d
and f.
An example of this categorization can be examined in Figure 3.1, where the same B-spline basis as in the
example for the jump operator in Section 2.5 is used. Essential primal DOFs are colored purple, floating DOFs
green and remaining DOFs black. Using this to again rearrange matrices and vectors, we get a sorted variant
of ˜︁u in the form of

˜︁u =
(︁˜︁uT

d ˜︁uT
f ˜︁uT

R,0 . . . ˜︁uT
R,N−1

)︁T
, (3.7)

with corresponding matrices

˜︁A =

⎛⎜⎝ ˜︁Add
˜︁Adf

˜︁AdR˜︁Afd
˜︁Aff

˜︁AfR˜︁ARd
˜︁ARf

˜︁ARR

⎞⎟⎠ , (3.8)

˜︁B =
(︂˜︁Bd

˜︁Bf
˜︁B(0)
R . . . ˜︁B(N−1)

R

)︂
, (3.9)

and right-hand side

˜︁f = (︁˜︁fTd ˜︁fTf ˜︁fTR,0 . . . ˜︁fTR,N−1

)︁T
. (3.10)

Since the solution for the essential primal DOFs is known from (2.50), the corresponding parts can be
transferred to the right side. With that, Problem 3.1 is equivalent to the following problem:

Problem 3.2 (Dual-Primal Formulation with Essential Boundary Conditions). Find u ∈ ˜︂Wh,p, represented by˜︁u and Lagrange multipliers λ ∈ RJ , such that(︄
A B

T
J

BJ 0

)︄(︃˜︁u
λ

)︃
=

(︃
f

bJ

)︃
, (3.11)

where

A =

⎛⎝I 0 0

0 ˜︁Aff
˜︁AfR

0 ˜︁ARf
˜︁ARR

⎞⎠ , (3.12)

f =

⎛⎝ ˜︁gd
f̃ f − ˜︁Afd˜︁gd
f̃R − ˜︁ARd˜︁gd

⎞⎠ , (3.13)

BJ =
(︂
0 ˜︁BJ,f

˜︁BJ,R

)︂
, (3.14)

bJ = bJ − ˜︁BJ,d˜︁gd , (3.15)

with I being the identity matrix. The vector ˜︁gd contains the values of the analytical function gD evaluated at
the essential primal DOFs. Again, when using the operator BM with right-hand side bM, the space ˜︂Wh,p is
replaced by Vh,p and λ ∈ Rm.

23

The constraints between the patches eliminate the patch-wise constant functions from the kernel, while
the incorporation of global boundary conditions eliminates the global constant functions. The matrix A is
therefore invertible. The matrices above can be separated into blocks that correspond to primal and remaining
DOFs respectively, yielding

APP =

(︃
I 0

0 ˜︁Aff

)︃
, APR =

(︃
0˜︁AfR

)︃
, (3.16)

ARP =
(︂
0 ˜︁ARf

)︂
, ARR = ˜︁ARR , (3.17)

fP =

(︃ ˜︁gd˜︁ff − ˜︁Afd˜︁gd
)︃
, fR = ˜︁fR − ˜︁ARd˜︁gd , (3.18)

BP =
(︂
0 ˜︁Bf

)︂
, BR = ˜︁BR . (3.19)

3.3. Dual Problem

Inverting the matrix (3.12) and applying it to the first line in (3.11) on both sides yields

˜︁u = A−1(f −BTλ) . (3.20)

Problem 3.3 (Dual Problem). With this, one can reformulate the second line of (3.11) and obtain the dual
problem

Fλ = d , (3.21)

with the symmetric and positive definite matrix F = BA−1BT and the vector d = BA−1f − b.

The authors of [24] state that the system of Problem 3.3 can be solved using a Conjugate Gradient (CG)
algorithm [32, Sec. 6.7]. To explicitly compute the needed inverse, the block-matrices defined in Problem 3.2
can be utilized with the block factorization

A−1 =

(︃
I 0

−A−1
RRARP I

)︃(︃
S−1
PP 0

0 A−1
RR

)︃(︃
I −APRA

−1
RR

0 I

)︃
, (3.22)

where

SPP = APP −APRA
−1
RRARP . (3.23)

One can assemble this global matrix SPP from local contributions

S
(i)
PP = A

(i)
PP −A

(i)
PR(A

(i)
RR)

−1A
(i)
RP . (3.24)

To construct u from the solution of the dual problem, one can first calculate

˜︁uP = S−1
PP

(︁
fP −B

T
Pλ−APRA

−1
RR(fR −B

T
Rλ)

)︁
, (3.25)

and then compute the remaining local solutions via

˜︁uR,i = (A
(i)
RR)

−1
(︁
fR,i − (B

(i)
R)Tλ−A

(i)
RP˜︁uP

)︁
. (3.26)

24

3.4. Preconditioner

In order to improve the convergence of the dual system when using the jump operator, a scaled Dirichlet
preconditioner that was introduced in [17] and extended to the dual-primal formulation in [16, Sec. 2.3] is
used by the authors of [24]. The usage of this preconditioner also requires a Preconditioned Conjugate Gradient
algorithm [32, Sec. 9].
For this, another categorization of the local DOFs is required. DOFs on the boundary ∂Γi of a patch Γi are
indicated with the subscript B and the ones in the interior with subscript I. Listing the DOFs in the interior
first, one obtains the structure

A(i) =

(︄
A

(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

)︄
. (3.27)

The dual-primal Dirichlet preconditioner is defined as

M−1 =
N∑︂
i=1

D(i)B
(i)
J

(︄
0 0

0 S
(i)
BB

)︄
(B

(i)
J)TD(i) , (3.28)

where

S
(i)
BB = A

(i)
BB −A

(i)
Bl (A

(i)
ll)

−1A
(i)
lB , (3.29)

and B
(i)
J denotes the constraints associated with patch Γi. The entry at position (k, k) of the matrix D(i) ∈

RJ×J is 1
mult(k) with

• mult(k) = 1 , if λk corresponds to an essential boundary condition,

• mult(k) = 2 , if λk corresponds to a coupling condition that does not involve a subdomain vertex,

• mult(k) ≥ 2 , if λk corresponds to a coupling condition that involves a subdomain vertex.

25

3.5. IETI-DP Algorithm

With the partitioning explained above, [24] proposes the following algorithm.

Algorithm (IETI-DP). Let A be the global stiffness matrix and f the global load vector as shown in (2.38).

1 for i← 1 to N do /* in parallel */
2 Assemble A(i) from A and fi from f ;
3 Partition A(i) and fi as in Section 3.2 and calculate S(i)

PP ;
4 Partition A(i) as in (3.27) and calculate S(i)

BB;
5 end
6 Assemble global dual problem Fλ = d as in Section 3.3;
7 Solve dual problem by PCG with preconditioner defined in Section 3.4;
8 Calculate primal solution ˜︁uP as in (3.25);
9 for i← 1 to N do /* in parallel */

10 calculate local solutions ˜︁uR,i as in (3.26);
11 end
12 assemble global solution vector from primal and local solutions;
13 return solution;

The aim of this thesis is to implement the given IETI-DP algorithm in the existing C++ framework of Bembel
provided by [10].

26

4. Implementation

This chapter highlights themost important aspects of the implementation of IETI-DP into the Bembel framework.
The used data structure for storing patch-wise information is specified and a class for computing the jump
operator as in Section 2.5.2 is stated. Based on that, classes for parallel matrix assembly and the computation
of the solution are presented and certain implementation details are highlighted. Pseudo-code is used for
algorithms outside the given sketch in Section 3.5. Regarding the actual IETI-DP algorithm, special emphasis
is placed on the local and global matrix structures that are obtained with Problem 3.2 and exploited for
parallelism.

4.1. BlockMatrix Struct

As the first loop of the proposed algorithm in Section 3.5 computes various local information on every patch
Γi in parallel, a data structure to store the resulting matrices and vectors is needed.

Field Description Type

essentials Total number of essential primal DOFs on the patch. int

offset_ess Global index of the patch’s first essential primal DOF in the
global partition.

int

offset_float Global index of the patch’s first floating primal DOF in the
global partition.

int

BR_loc Constraints for the patch’s remaing DOFs as in (3.9). Eigen::SparseMatrix<double>

A_RP Local ARP as in (3.17). Eigen::SparseMatrix<double>

A_PR Local APR as in (3.16). Eigen::SparseMatrix<double>

permutations Local dual-primal and essential-floating partition. Eigen::PermutationMatrix

f_bar_i Entries of the local load vector as in (3.18). Eigen::VectorXd

triplets_M Local contribution to the dirichlet preconditioner. std::vector<Triplet>

triplets_F_i Local contribution to the dual system matrix. std::vector<Triplet>

Table 4.1.: Fields of the used BlockMatrix struct with typedef Triplet = Eigen::Triplet<double>.

We use a simple struct called BlockMatrixwith the fields listed in Table 4.1. Every patch Γi with i = 0, . . . , N−1
needs its own BlockMatrix-struct and every thread of the parallelization will have to work independently on

27

one of them. For that, all the structs are stored in a std::vector<BlockMatrix>. The resulting scheme can be
retraced in Figure 4.1.

std::vector<BlockMatrix>

[0] → BlockMatrix

...

[i] → BlockMatrix

essentials

offset_ess

offset_float

BR_loc

A_RP

A_PR

permutations

f_bar_i

triplets_M

triplets_F_i

[...]

...

[N] → BlockMatrix

...

Figure 4.1.: Schematic of the used data-structure.

4.2. Dirichlet Data

In order to impose inhomogeneous Dirichlet conditions, we assume a given vector ĝ, containing the coefficients
in (2.50) at the indices corresponding to DOFs affected by a boundary constraint. A class DirichletDataIETI
then computes an approximation to the vector ˜︁gd by sorting ĝ as in Section 3.2 and extracting as many
elements as there are essential primal DOFs. The implications of this approach are discussed in Chapter 5.
Regarding homogeneous Dirichlet boundary conditions, ĝ and ˜︁gd are obtained by initializing them as zero
vectors.
Later on, the aglorithm needs to determine whether a DOF is essential primal or floating primal. As we have
inspect all edges to find the ones on the boundary, a std::vector<bool> called lookup is computed alongside,
in which we encode which DOFs are global primal. All entries are initialized with the boolean value 1 and
updated to 0 if the corresponding DOF is associated with the global boundary. By doing this for every patch,
all interior DOFs and DOFs on an interface between patches are still associated with the value 1. However,
because the index of every primal DOF can be computed solely with the number of DOFs on the patch, lookup
is then only evaluated for these primal indices.

4.3. Jump Operator Class

Concerning the local contributions to the dual problem, one first has to evaluate global information in order
to assemble the jump operator stated in Section 2.5 as well as the matrix D in Section 3.4. Both need to
consider the global information regarding the coupling of the patches via constraints. Therefore, a class

28

named JumpOperator is implemented to handle the assembly and manage those global operators.
The Bembel framework provides us with the method patchTopologyInfo() of the ElementTree class, which
returns a std::vector<std::array<int, 4>> that encodes every edge case in an array of four integers we call
edge:

edge[0]→ patchnumber of primary patch

edge[1]→ patchnumber of secondary patch

edge[2]→ edge case on primary patch

edge[3]→ edge case on secondary patch

Note that the resulting vector does not contain any duplicates.
Additionally, the function GlueRoutines::getEdgeDofIndices() returns the global index of all DOFs associated
with an edge. Furthermore, the ElementTree class uses a tree structure consisting of ElementTreeNode instances
to provide information on neighbourhood relations between patches. Each ElementTreeNode instance stores a
patch number and pointers to the edge-wise adjacent patches.

Algorithm (Compute Jump Operator).

Data: ElementTree element_tree
Result: Eigen::SparseMatrix B, Eigen::SparseMatrix D

1 extract edges from element_tree;
2 std::vector<Triplet> trip_rem, trip_prim, trip_prim_bndry;
3 for each edge do
4 if edge[1] == -1 then
5 compute DOFs using GlueRoutines::getEdgeDofIndices;
6 for each DOF do
7 if DOF is primal then
8 if not in trip_prim_bndry then
9 trip_prim_bndry.push_back();

10 end
11 else
12 trip_rem.push_back();
13 end
14 end
15 else
16 for each remaining DOF do
17 trip_rem.push_back();
18 end
19 check constraints clockwise;
20 check constraints counter-clockwise;
21 end
22 end
23 concatenate triplet vectors;
24 B.setFromTriplets();
25 D.setFromTriplets();

29

Using these routines, the algorithm above for computing the jump operator and the matrix D is implemented.
Here and at various other sequences of the implementation, a std::vector<Triplet> is used to store data for
Eigen::Sparse matrices. This is done to increase performance, as suggested by [19]. When collecting the
triplets for the jump operators non-zero entries, the routine has to inspect the already collected entries in order
to prevent duplicates. With the aim to significantly decrease the number of triplets to inspect, three separate
vectors are used. Since there are no duplicates in the edge vector, only primal DOFs can be identified multiple
times by getEdgeDofIndices(). Therefore, one triplet vector is used to exclusively store the information
regarding remaining DOFs. In almost any case, the majority of constraints is generated by these DOFs and
this way no additional checking for duplicates is necessary for them.
Finding vertex conditions between patches that are not otherwise linked via an edge requires to iterate over
neighbouring patches. This is done in clockwise and counter-clockwise direction for every edge that connects
two patches. In the process, the number of connected patches needed for the multiplicities in the matrix D
introduced in Section 3.4 can be tracked and then calculated after each search. The principle is exactly the
same for both routines, only indices and switch cases differ between the procedures.

Algorithm (Check Constraints (Counter)-Clockwise).

Data: std::array<int, 4> edge
1 determine primal_dof on starting patch;
2 int next_patch = edge[1];
3 int incoming_edge = edge[3];
4 int multiplicity = 1;
5 do
6 ++multiplicity;
7 determine primal_dof_2 on next_patch;
8 if not in trip_prim then
9 trip_prim.push_back();

10 update next_patch;
11 update incoming_edge;
12 while next patch != starting patch;
13 set multiplicities in D;

The variable primal_dof stores the index of the DOF on the starting patch for which the constraints are
computed. Another variable incoming_edge encodes via which edge the algorithm stepped onto the patch it is
currently on by using the edge-cases depicted in Figure 2.4. This information is also needed in order to find
the next patch next_patch to scan, as well as to determine which DOF primal_dof_2 is linked to primal_dof
in order to obtain the correct constraint.

30

Step 0

Γ0

Γ2 Γ3

Γ1

Step 1

Γ0

Γ2 Γ3

Γ1

Step 2

Γ0

Γ2 Γ3

Γ1

Step 3

Γ0

Γ2 Γ3

Γ1

Figure 4.2.: Searching for constraints in counter-clockwise direction. With the last depicted step, the termi-
nation condition is reached.

Considering Figure 4.2, where a counter-clockwise search starting at the patch Γ0 is performed, the procedure
can be retraced. The primal_dof is marked in red, the incoming_edge, primal_dof_2 as well as the next_patch
in blue and detected constraints in green.
For the primal DOFs, one vector stores all the constraints with the boundary, while the other one stores
constraints between primal DOFs. The constraints between patches can only be detected by the clockwise and
counter-clockwise search routines above and both are not executed at all when an edge is associated with the
global boundary. This means the search routines can only inspect the vector with constraints between patches
for duplicates, while the part of the algorithm for boundary contraints does so in a separate vector. At the end,
the three triplet vectors are concatenated and the global operators are computed using setFromTriplets().

4.4. Block Matrix Operator Class

In pursuance of storing the data structure presented in Section 4.1 and to execute the patch-wise calculations,
we define the BlockMatrixOperator class. The core of the class is the assembleLocalMatrices() routine, which
uses the AnsatzSpace, the global load vector f , the vector ˜︁gd and the lookup vector generated in Section 4.2 to
compute all fields for every BlockMatrix struct. During the calculations, the structures of the matrices derived
in Section 3 are exploited in order to realize large parts of the procedure in parallel.

31

Computing the Partitions

Before constructing the triplets and matrices, the algorithm computes all necessary indices and permutations.
The partitions regarding primal and dual as well as interior and boundary DOFs in the fully matching setting
are identical for every patch and therefore only need to be computed once. Both are directly linked to the
number of DOFs on every patch and can therefore be computed by simply collecting indices with a single for
loop.
In contrast, the partition in essential and floating primal DOFs is in general unique for every patch of the
geometry. Because of that, these partitions are collected in parallel on every patch, storing each of them
using a Eigen::PermutationMatrix in the field permutations of the corresponding BlockMatrix struct. In the
process, the lookup vector is used to determine which DOFs are essential primal in the way described in
Section 4.2.
Afterwards, two additional Eigen::PermutationMatrix named perm_local and perm_global are computed.
The first one realises a permutation matrix that sorts all patches according to their individual dual-primal
and essential-floating partition simultaneously, while the second one then sorts the resulting matrix or vector
globally as in Section 3.2.

Local Contributions to the Dual Problem

Explicitly computing the dual problem’s system matrix using the block factorization (3.3) yields

F = B

(︄
S
−1
PP

[︁
B

T
P −APRA

−1
RRB

T
R

]︁
−A−1

RRARPS
−1
PP

[︁
B

T
P −APRA

−1
RRB

T
R

]︁
+A

−1
RRB

T
R

)︄
. (4.1)

For the term in brackets forming A
−1

B
T , the structures of the matrices can be exploited in order to directly

assemble the triplets for the global matrix independently on every patch. Every following step is therefore
computed in parallel with each thread handling a single patch and the corresponding BlockMatrix struct.
At first, the local stiffness matrix and the complementary part of the load vector are extracted from the global
system (2.38). The local permutation matrix stored in permutations is applied to sort both of them according
to the patches unique dual-primal and essential-floating partition. This sorted stiffness matrix is then split
up into the four independent matrices ˜︁A(i)

PP, ˜︁A(i)
PR, ˜︁A(i)

RP and ˜︁A(i)
RR as in Section 3.2. Since ˜︁A(i)

PP is always
a four-by-four matrix, a dense Eigen::MatrixXd object is used, while the other matrices are stored using
Eigen::Sparse<double> instances.
The entries of ˜︁A(i)

PP, ˜︁A(i)
PR and ˜︁A(i)

RP that correspond to bilinear forms involving essential primal DOFs are
then set to zero and one respectively. In the process, the local load vector is updated in order to obtain the
structures of Problem 3.2 locally, yielding A

(i)
PP, A

(i)
PR and A

(i)
RP.

ARR is then factorized using Eigen’s built-in sparse LU decomposition. Using this factorization and the matrix
ARP as the right-hand side, the four-by-four matrix S

(i)
PP as in (3.23) can be computed and inverted. The

global SPP is a block diagonal matrix with as many ones as there are essential primal DOFs on the diagonal,
followed by irregular sized blocks whose dimensions match the number of floating primal DOFs on each
patch. Instead sorting this matrix and all the other global matrices and vectors in the sortation realized by the
perm_local matrix leads to a patch-wise structure for the term in brackets in (4.1). This structure first lists
all local primal DOFs sorted with respect to the essential-floating partition and then all the remaining DOFs
patch-wise. In conclusion, computing the triplets for the matrix product A−1

B
T in parallel is achieved by first

assembling it using the sortation realized by the perm_local matrix and then sorting the assembled matrix
using perm_global.

32

This is realized by first sorting the jump- or mortar operator using perm_local. Each thread then extracts the
matrices (B(i)

R)T and (B
(i)
P)T corresponding to its patch. The local contribution to the product APRA

−1
RRB

T
R is

then computed in two steps in order to store the interim result marked orange in (4.1).
Note that (˜︁B(i)

R)T = (B
(i)
R)T is a sparse matrix and only the columns corresponding to constraints that apply to

the current patch have non-zero values. Because of this, the dimension of ARR grows faster than the number
of these constraints. Especially when considering a high refinement level, the number of systems solved
with the LU decomposition of ARR is therefore smaller than the number of columns in (˜︁B(i)

R)T or A−1
RR. As

(˜︁B(i)
R)T is stored using the column-major storage scheme, the built-in method col() can be used to read and

write the column marked in red in Figure 4.3a. Using these informations, one can iterate over the columns
of (˜︁B(i)

R)T containing non-zero entries and use each of them as an input vector for the LU decompositions
solve() method. The result can then be written back into the same row, yielding the matrix product depicted
in Figure 4.3a.

(A
(0)
RR)

−1(˜︁B(0)
R)T

(A
(1)
RR)

−1(˜︁B(1)
R)T

(A
(2)
RR)

−1(˜︁B(2)
R)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

(A
(0)
RR)

−1 0 0

0 (A
(1)
RR)

−1 0

0 0 (A
(2)
RR)

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(˜︁B(0)
R)T

(˜︁B(1)
R)T

(˜︁B(2)
R)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Column-wise solution via LU decomposition.

0

˜︁A(0)
fR (A

(0)
RR)

−1(˜︁B(0)
R)T

˜︁A(1)
fR (A

(1)
RR)

−1(˜︁B(1)
R)T

˜︁A(2)
fR (A

(2)
RR)

−1(˜︁B(2)
R)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

0

˜︁A(0)
fR

0 0

0 ˜︁A(1)
fR

0

0 0 ˜︁A(2)
fR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A
(0)
RR)

−1(˜︁B(0)
R)T

(A
(1)
RR)

−1(˜︁B(1)
R)T

(A
(2)
RR)

−1(˜︁B(2)
R)T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) Matrix product leads to entry.

Figure 4.3.: Steps for computing the term APRA
−1
RRB

T
R.

The resulting columns containing non-zeros are then multiplied by the local APR, yielding a matrix as in
Figure 4.3b. On a patch, only the marked strip with as many rows as there are floating primal DOFs on the
associated patch is computed. This matrix is then subtracted from the rows of the local (B(i)

P)T that correspond
to the local floating primal DOFs. After that, the inverse of S(i)

PP is used to compute the end result for the first
line marked blue in (4.1). This result can then be reused to compute the second row of the matrix. For both,
a helper routine is used to extract the triplets of the local sparse matrices and equip them with an offset for
their row and column value. Using the offset fields of the struct, this leads to triplets that can later be used to
directly assemble the global matrix A

−1
B

T after applying the global permutation matrix perm_global.

33

Using the same approach as above, part of the dual problem’s right-hand side

d = B

(︄
S
−1
PP

[︁
fP −APRA

−1
RRfR

]︁
−A−1

RRARPS
−1
PP

[︁
fP −APRA

−1
RRfR

]︁
+A

−1
RRfR

)︄
− b , (4.2)

can be computed using the same steps as for the system matrix. This time however, the calculations result in
vectors, which means only a single linear system has to be solved with the LU factorizations each time. The
number of DOFs per patch is known in advance, therefore the term in brackets in (4.2) is directly assembled
in a single vector. As before, the result is sorted according to the patch-wise dual-primal and essential-floating
partition of perm_local.
It is important to note that the current implementation is not able to handle geometries with all-floating
patches, meaning patches without any essential primal DOFs. If this is the case, no information is added to the
corresponding stiffness matrix, leaving it in the state of Section 2.5.1. A block in matrix (2.38) corresponding
to an all-floating patch is therefore not invertible, invalidating all further derivation of Section 3.2. Every
patch in the implementation presented with this thesis needs at least one essential primal DOF, as the kernel
of each local stiffness matrix has dimension one.

4.5. IETI-DP Routine

Solving the Dual Problem

After using the classes defined in the sections before, we need to assemble the global matrices for the dual
Problem 3.3 from the local information of the BlockMatrix structs. All the local vectors of triplets can be
directly inserted into the global matrix without changing any of their data. To avoid copying all of them
into a global vector for the setFromTriplets() routine, a custom forward_iterator is implemented for
the BlockMatrixOperator. This iterator additionally stores a patch index and a pointer to a std::vector<
BlockMatrix> as in Figure 4.1. When incrementing the iterator past the last address of a patch’s triplets_F_i
vector, it is determined whether the patch index corresponds to the number of entries in the std::vector<
BlockMatrix>. If this is not the case, the patch index is increased by one and the pointer is set to the first
address of the next patch’s triplets_F_i vector. By doing this and applying the global permuation matrix, the
global matrix A

−1
B

T can be assembled from the BlockMatrix structs with a single line of code. The vector
containing local contributions to d is then also sorted globally. When using the jump operator, the vector b is
obtained as noted in [24, p. 205] via

BJĝ , (4.3)

and b is then computed via (3.15). With the operator B, the dual Problem 3.3 is set up and solved using
Eigen’s implementation of a CG algorithm for sparse systems.

Preconditioner

The contributions to the preconditioner matrixM−1 are computed locally as shown in Section 3.4 and saved as
a list of triplets for each patch. Implementing another iterator for the BlockMatrixOperator, the preconditioner
is assembled in the same way as the matrix product A−1

B
T for the system matrix F of the dual problem. In

this case, no sortations need to be considered. The setFromTriplets() method has a third optional argument

34

in the form of a functor, which is used when duplicates are met during the assembly. With a simple lambda
function, the needed summation in (3.28) is implemented.

Assembling the Solution

The last part of the IETI-DP routine computes the DOFs of the original Problem 3.2 using the solution λ of the
dual problem. Contrary to the algorithm proposed by [24], this thesis pursues a completely parallel approach
for assembling the vector ˜︁u. This is again achieved by adhering to the sortation implied by perm_local.
The number of essential DOFs on a patch stored in the essentials field is used to compute the matrix-vector
B

T
Pλ product in (3.25) patch-wise. This is achieved by extracting the corresponing columns using Eigen’s

middleCols()method. All other matrices and vectors needed for ˜︁uP as in (3.25) are stored in the BlockMatrix
struct. After aquiring the solution for a patch’s primal DOFs, the remaining DOFs (3.26) are computed within
the same parallel loop. The resulting global vector of DOFs is therefore sorted with the local partition. This is
reversed in a last step by applying the transpose of the corresponding global permutation matrix, yielding the
solution vector u.

4.6. Mortaring and Local Refinement

Already indicated by [24, Rem. 5.1], the jump operator can be replaced by the mortar operator of Section 2.5.3,
yielding Problem 2.12. The implementation by [28] also provides a routine to assemble the corresponding
right-hand side bM. The resulting vector is used instead of (4.3) to assemble the dual problem.
The mortar operator is not limited to the fully matching setting we introduced with the jump operator, which
opens the possibility for patch-wise refinement. In other words, distinct patches can now posses different
refinement levels. In order to realize this, the struct illustrated in Figure 4.1 has to store information regarding
the patchs refinement and code of the BlockMatrixOperator and has to be altered slightly. Where we before
computed the dual-primal and interior-boundary partition once, we now have to do so for every patch. In
addition to that, important information like the number of DOF on every patch and the index of the first
remaining DOF in the global indexing are not as trivial as before.
Those information are computed in an additional for loop, which is executed at the begining of the
assembleGlobalMatrices() routine. By doing this, the dual-primal and interior-boundary partitions can
be computed before the essential-floating partition within the same parallel loop.

35

5. Results

In the following, the implementation of IETI-DP is tested using three exemplary geometries of increasing
complexity, which are constructed with the Octave [13] nurbs package [33]. The examples are chosen in a
way that an analytical solution is known, which enables us to compute a reference solution u analytically and
then compare it to our numerical results uh using the relative L2-error

ϵrel =
||uh − u||L2(Γ)

||u||L2(Γ)
. (5.1)

However, because the solution is represented by the vector u, we need the L2-projection of the reference
solution uref onto the same space as u. The projection onto the N -dimensional space Vh,p is achieved as in
[28] by using the mass matrix

M :=
(︂∫︂

Γ
φiφjdσ

)︂
1≤i,j≤N

, φi, φj ∈ Vh,p , (5.2)

with a right-hand side computed with the reference solution

f :=
(︂∫︂

Γ
φiudσ

)︂
1≤i≤N

, φi ∈ Vh,p , (5.3)

which leads to a linear system

Muref = f . (5.4)

Solving this system yields a vector uref that can be compared to the solution vector u of the IETI-DP routine.
We therefore compute

ϵrel =

√︄
(u− uref)TM(u− uref)

uT
refMuref

. (5.5)

Additionally, because two variants of coupling matrices are available, we again indicate everything related to
the mortar operator by the subscript M and for the jump operator by J. If not stated otherwise, the solution
of every following setting is computed using first- to fifth-order B-splines as basis functions and a fixed global
refinement levelm on every patch. This setting therefore also implies a global element width h. The refinement
level is then incremented multiple times for every considered order. With the theoretical work by Bazilevs, da
Veiga, Cottrell, Hughes and Sangalli [3], we expect higher refinement levels to yield lower relative errors and
that the convergence rate of this error increases with the used degree of B-spline basis functions. Additionally,
the results by [28, Sec. 5.1] are used as a reference, where the problem 2.12 was solved for various geometries
using a direct method.
At the date of submission of this thesis, the Eigen library does not support the implemented preconditioner.
Subsequently, all data is generated without preconditioning of the dual system.

36

5.1. Quad Patch Geometry

Homogeneous Dirichlet Data

In a first experiment, we investigate the validity of the given implementation with a simple example. We
choose a square

Γ :=
{︁
xxx ∈ R3 : 0 ≤ x1, x2 ≤ 2, x3 = 0

}︁
, (5.6)

that is made up of four shifted unit square patches. Since this example geometry has no curvature, Problem 2.5
is equivalent to solving Poisson’s equation in two dimensions. We choose an exemplary solution u(xxx) that can
easily be treated analytically with

u(xxx) = sin(π
x1
2
) sin(π

x2
2
) . (5.7)

The right-hand side is then be computed via

−∆Γu(xxx) = −∆u(xxx) =
1

2
π2 sin(π

x1
2
) sin(π

x2
2
) . (5.8)

This way, a setting with homogeneous Dirichlet conditions is achieved. A plot of the reference solution and
the subdivision of the domain Γ into patches is depicted in Figure 5.1.

(a) Patches of the quad patch geometry.

0

1

(b) Reference solution (5.7) on the geometry.

Figure 5.1.: Quad patch geometry with reference solution.

Using the same ansatz space, the reference solution is obtained as in (5.4) and a relative error is computed
via (5.5). The following plots display the results using the jump operator to enforce the constraints between
patches and for the boundary.

37

1 2 3 4 5 6 7

100

10−4

10−8

10−12

10−16

refinement level m

L
2
-e
rr
or

p = 1 p = 2

p = 3 p = 4

p = 5 O(h2)

O(h3) O(h4)

O(h5) O(h6)

Figure 5.2.: Convergence rate of Laplace-Beltrami problem without curvature and homogeneous Dirichlet
data on a four-patch geometry. Continuity constraints between patches and with the boundary
are imposed by the jump operator.

All data can be examined in Appendix B. The convergence rates observed via Figure 5.2 meet our expectations,
as they resemble the results by [3] and [28].
The refinement levels not shown in the plot either lead to the machine in use to run out of memory or the results
do not continue the indicated convergence rates. We assume the condition number of the unpreconditioned
dual system matrix to be the reason for this behavior. The results by [24, Sec. 6] showed a fast increase of
this number with further refinement and [31] showed that the condition number of the underlying stiffness
matrix increases with the polynomial degree of the used basis functions.
The relative error was computed for the jump operator as well as mortaring, but the results in this homogeneous
setting do not differ for most cases, at least up to the sixth significant figure. Only the cases that do not show
the described convergence and one case with a significantly deviant iteration number are exceptions. In
general, the computations using the mortar operator needed significantly more iterations for solving the dual
problem. The concrete numbers can be retraced in Table B.1. This indicates worse condition numbers for the
dual system matrix obtained with the mortar operator implemented by [28] in the fully matching setting.

5.2. Quarter Sphere Geometry

Inhomogeneous Dirichlet Data

Continuing with a more complex case, curvature is added to a six-patch geometry to achieve a quarter of a
sphere

Γ :=
{︁
xxx ∈ R3 : ||xxx||2 = 1, z ≥ 0, y ≤ 0

}︁
. (5.9)

With [2, Sec. 3.3], we know that the Laplace-Beltrami operator on the unit sphere has the spherical harmonics
as eigenfunctions. Therefore, a possible analytical solution of Problem 2.5 has the form

u(xxx) = Y1,1(xxx) :=

√︃
3

4π
x1 , (5.10)

38

if inhomogeneous Dirichlet boundary conditions are used. The corresponding right-hand side is again computed
analytically, yielding

−∆Γu(xxx) =

√︃
3

π
x1 = f(xxx) . (5.11)

(a) Patches of the quarter sphere geometry.

−0.5

0

0.5

(b) Reference solution (5.10) on the geometry.

Figure 5.3.: Quarter sphere geometry with reference solution.

The subdivision of the quarter sphere into six patches is depicted in Figure 5.3a and Figure 5.3b shows the
analytical reference solution on the geometry.
Regarding the boundary data, we use the reference solution uref obtained via (5.4) with the approach depicted
in Section 4.2. The vector ĝ is computed by copying the entries of the reference solution at the indices of
DOFs associated with the boundary into a new vector. All other entries are initialzed as zero.
It is important to note that this does not agree with the vectors presumed by [24] and merely corresponds
to an approximation of the boundary data. Additionally, the vector uref does not adhere to the matching
of DOFs along edges enforced by the jump operator, because the mass matrix does not incorporate this
continuity between patches. Theoretically, this is problematic when considering essential primal DOFs that are
additionally linked via a condition resulting from an interface edge. However, the right-hand side is obtained
via (4.3), which leads to the difference between the essential primal DOFs being set accordingly.
Moreover, the right-hand side for the mortar operator (2.53) is provided by [28]. Regarding homogeneous
Dirichlet boundary conditions, the said vector is a zero vector and therefore agrees with Section 4.2. On the
contrary, this leads to divergent boundary data when considering an inhomogeneous setting with the mortar
and jump operator. For this reason we expect a more significant deviation between the results of problem 2.12
and Problem 2.11 when inhomogeneous Dirichlet boundary conditions as in Section 4.2 are used. However,
the resulting convergence rates should not be fundamentally different.

39

1 2 3 4 5 6 7

100

10−4

10−8

10−12

10−16

refinement level m

L
2
-e
rr
or

p = 1 p = 2

p = 3 p = 4

p = 5 O(h2)

O(h3) O(h4)

O(h5) O(h6)

Figure 5.4.: Convergence rate of Laplace-Beltrami problem with curvature and inhomogeneous Dirichlet data
on the quarter sphere geometry. Continuity constraints between patches and with the boundary
are imposed by the jump operator.

The resulting convergence rates in Figure 5.4 resemble the rates of the homogeneous example before. This
indicates that the incorporation of the essential boundary conditions in Section 3.2 is correctly implemented
with the approach depicted in Section 4.4. The used Dirichlet data leads to the expected deviation between
the two operators. However, the dataset in Table B.2 shows that the convergence rates are indeed similar.

Parallelization

In order to examine the parallelism of the algorithm each refinement step is executed twice, once with the
loops over all patches in assembleLocalMatrices() and IETI in parallel and once sequential. It is necessary
not to completely turn of multithreading in the second case because Eigen and Bembel themselves provide
support for parallelism, what would therefore distort the result. For the jump operator, the runtime of the
IETI-DP routine is measured and used to compute the ratio of parallel runtime tmult to the single-threaded
one tsingle. The utilized machine uses an AMD Ryzen™ 5800H chip [1] with 8 cores.
Since we specifically want to investigate the parallel runtime advantage of the IETI-DP routine depicted in this
thesis, we also measured the runtime for the global stiffness matrix assembly inside the IETI class separately
and subtracted it from both parallel and sequential runtime.

40

2 3 4 5 6 7

0.2

0.4

0.6

0.8

refinement level m

t m
u
lt

t s
in

g
le

p = 1 p = 2

p = 3 p = 4

p = 5

Figure 5.5.: Ratio of parallel to sequential runtime of Laplace-Beltrami problem with curvature and inhomo-
geneous Dirichlet data on quarter sphere geometry.

The resulting data is displayed in Figure 5.5 and shows a significant runtime advantage of the implementation
when multithreading is enabled. This confirms the highly parallelizable nature of the approach presented by
the authors of [24]. For the excluded cases, the total runtime is either smaller than 1ms or the resulting ratio
varies too distinctly between multiple runs to achieve a dependable average.

Patch-Wise Refinement

With the knowledge of Section 4.6, the mortar operator can be used in a patch-wise refined setting. This
experiment solely aims to confirm the functionality of this approach, which is why we use the same geometry
as before and add additional refinement steps to certain patches.

Figure 5.6.: Elements of the quarter sphere geometry with exemplary patch-wise refinement.

As it is shown Figure 5.6, a pair of two patches of the quarter sphere geometry shares one of three possible
refinementsma, mb = ma+1 andmc = ma+2 with the resulting element widths ha, hb and hc. It is reported
by [24, Sec. 6] that this setting leads to a larger condition number for the dual system matrix. We therefore
limit this setting to first- and second-order polynomials, as the experiments before revealed that higher orders
stop converging at lower refinement levels. The results are shown in Figure 5.7, where the number on the
abscissa now describes the lowest refinement used on the geometry.

41

1 2 3 4 5 6

100

10−4

10−8

10−12

refinement level ma

L
2
-e
rr
or

p = 1 p = 2

O(h2
a) O(h3

a)

Figure 5.7.: Convergence rate of Laplace-Beltrami problem with curvature and inhomogeneous Dirichlet data
on the quarter sphere geometry using patch-wise refinement. Continuity constraints between
patches and with the boundary are imposed by the mortar operator.

The indicated convergence rates are the same as in the settings before. This meets our expectations, because
we incremented the refinement level of every patch by one in every step and used B-splines of the same order
on all patches. These observations confirm the functionality of the updates to IETI-DP described in Section 4.6
in a setting that is not fully matching.

5.3. Sphere Geometry

Lastly, a sphere geometry with two holes is examined in order to further test the scalability of the implemen-
tation. The geometry consists of 16 patches and is depicted in Figure 5.8. Because this geometry is again part
of a unit-sphere, the spherical harmonic (5.10) with right-hand side (5.11) is still valid if inhomogeneous
Dirichlet conditions are used. For this, we use the same approach as for the quarter sphere geometry, this time
plotting the results obtained with the mortar operator.

42

(a) Patches of the sphere geometry.

−0.5

0

0.5

(b) Reference solution (5.10) on the geometry.

Figure 5.8.: Sphere geometry with reference solution.

1 2 3 4 5 6

100

10−4

10−8

10−12

10−16

refinement level m

L
2
-e
rr
or

p = 1 p = 2

p = 3 p = 4

p = 5 O(h2)

O(h3) O(h4)

O(h5) O(h6)

Figure 5.9.: Convergence rate of Laplace-Beltrami problem with curvature and inhomogeneous Dirichlet data
on the sphere geometry. Continuity constraints between patches and with the boundary are
imposed by the mortar operator.

With the mortar operator, the convergence rates depicted in Figure 5.9 agree with the results we obtained
with the settings before. The jump operator produces an outlier regarding the iterations to solve the dual
problem and the relative error. The data can be observed in Table B.3.
As a last experiment, we solve the given problem with fixed polynomial degree and refinement, but with an
increasing number of available threads. Although the machine in use supports hyper-threading with up to 16
threads, [14] strongly advises against its use. This is why the number of threads is limited to the advised
number of available cores, namely eight.

43

1 2 3 4 5 6 7 8
0.25

0.5

0.75

1

#threads

t m
u
lt

t s
in

g
le

Figure 5.10.: Ratio of parallel to sequential runtime of Laplace-Beltrami problem on the sphere geometry with
increasing number of available threads.

We choose a setting with third-order B-splines and refinement level five. As before, the ratio of parallel to
sequential runtime is computed. The results presented in Figure 5.10 further validate the parallelism of the
implemented algorithm.

44

6. Final Remarks

In this final chapter, the results of this bachelor thesis are summarized and we propose some suggestions to
follow up this work.

6.1. Summary

We discussed the analysis for solving PDEs stated on curved surfaces using a finite element method. A
multi-patch NURBS representation of this surface led to an isogeometric domain decomposition approach,
resulting in a saddle point problem in the form of Problem 2.11. In Chapter 3 we then retraced the dual-primal
and essential-floating partition of the resulting matrices and vectors in order to state the IETI-DP algorithm.

With Chapter 4, we presented an implementation of the jump operator introduced by [24] that minimizes the
computational cost of checking for duplicates when assembling the constraints for C0-continuity between the
subdomains in a domain decomposition context. This led to a sparse matrix that can be utilized as a coupling
operator in a fully matching setting for Problem 2.11.

Regarding the actual IETI-DP algorithm, we introduced a data structure in Section 4.1 that is suitable
for parallelization of the algorithm. Using this, we implemented the IETI-DP algorithm into the Bembel
framework [10]. The provided routine uses sparse matrices whenever useful and apart from two cheap sparse
matrix multiplications, assembles the dual problem completely in parallel from local contributions and without
unnecessary copying. With the solution vector of the dual problem, the DOFs of the original problem are
assembled completely in parallel as well, only requiring sorting via a single sparse matrix-vector multiplication.
Problem 2.11 is thereby solved without ever assembling the full system. The largest linear subsystem the
IETI-DP algorithm solves is either bound by the number of constraints or the maximum number of remaining
DOFs on a single patch.

We were also able to replace the jump operator by the mortar operator implemented by [28], which enabled
patch-wise refined settings.

The algorithms functionality was then verified in settings with curvature, inhomogeneous Dirichlet boundary
conditions and patch-wise refinement. With both operators, the observed convergence rates met expectations
based on papers such as [3] and the preceding work by [28]. We also examined the runtime advantage of
the implemented algorithm resulting from multithreading, which showed a significant effect even for the
relatively small examples considered in this work.

45

6.2. Further Work

In this section, limitations that the submitted implementation and the method itself showed during testing are
discussed. Additionally, fixes as well as future extensions that went beyond the scope of this bachelor thesis
are proposed and some already developed ideas are sketched.

• At the date of submission, the current version of the implementation has to factorize the local matrix
ARR twice, once during the computations in assembleLocalMatrices() described in Section 4.4 and a
second time during the assembly of the DOFs during execution of the IETI routine of Section 4.5.

• The marked entry in Table B.1 stands out with a significantly higher number of iterations when using the
jump operator. This was the only case for which the relative errors of the operators differed when using
homogeneous Dirichlet data. Regarding inhomogeneous conditions, the outlier in Table B.3 additionally
led to a clearly deviating relative error. As opposed to the jump operator, the number of iterations and
the relative error of the mortar operator is plausible in both cases.

• Another problem arises when considering geometries with patches that are only connected to the global
boundary via vertex conditions. These are not considered by the patchTopologyInfo() routine and the
corresponding entries in the lookup vector are not set correctly in the process shown in Section 4.2. This
can be fixed in the future by using an approach similar to the one for the vertex conditions of the jump
operator in Section 4.3. After evaluating all the edges on the global boundary, the routine would need
to execute the clockwise and counter-clockwise search and afterwards add a boundary condition for
every found DOF if the starting DOF primal_dof is affected by a boundary constraint.

• Additional measurements are required for the runtime-ratios in Table B.2 and Table B.5 in order to make
them scientifically valid. The submissed version of this thesis took an average of three measurements.

• A possible approach for all-floating patches is proposed by [20], where additional conditions are
introduced into the dual problem of Section 3.3 using a pseudo-inverse of the local stiffness matrix and
a matrix representing its null space. This yields a saddle point problem for the dual problem.

• The class DirichletDataIETI needs to be extended in order to compute the Dirichlet boundary data
presumed by [24]. The vector ˜︁gd can be obtained by determining the corner of the domain □ that
corresponds to each essential primal DOF. Bembel provides the method map2surface() of the SuperSpace
class, which can be used to evaluate the function gD at the point this corner is mapped to in the
physical domain. Regarding the coefficients gk,i in (2.50), a separate routine would need to solve an
approximation problem on the boundary using the B-spline basis on that patch.

• The computation of the dual system matrix F in (4.1) can be achieved completely in parallel by also
sorting the matrixB with the sortation implied by perm_local. However, this would lead to a rearranged
version of F, which has implications on the following computations.

46

A. Non-Uniform-Rational-B-Splines

As a polynomial curve, the introduced B-spline cannot represent conical shapes. These are needed in a variety
of common geometries and should therefore be representable in the geometry mapping.
In order to overcome this, one has to work with rational functions [6, Sec. 3.6]. Hence, the rational extension
of B-splines, in the form of NURBS are introduced. They allow to represent conic segments while maintaining
most of the B-splines properties. For additional information on these properties, please refer to [30, Chap. 4].
Given an open knot vector, we can define n B-splines according to Definition 2.6. A strictly positive weight
wi ∈ R>0 is assigned with each of them, collecting those weights in a vector W := (w1, . . . , wn).

Definition A.1 (Non-Uniform Rational B-Splines, [6, Def. 9]). The n NURBS basis functions R(p)
i,Ξ,W , related

to the knot sequence Ξ and the weight-vector W , are given by

R
(p)
i,Ξ,W (x) :=

wiN
(p)
i,Ξ (x)∑︁n

j=1wjN
(p)
j,Ξ(x)

. (A.1)

As with the B-splines in Definition 2.9 with two given knot vectors, one can construct tensor-product NURBS
surfaces

FFF (□) :=

n1∑︂
i=1

n2∑︂
j=1

Ci,j

wi,jN
(p1)
i,Ξ (x1)N

(p2)
j,Υ (x2)∑︁n1

s=1

∑︁n2
r=1ws,rN

(p1)
s,Ξ (x1)N

(p2)
r,Υ (x2)

, wi,j > 0, Ci,j ∈ Rd. (A.2)

A step-by-step exemplary construction of a NURBS geometry can be found in [8, Sec. 2.4].

47

B. Data

48

p = 1

#DOF 36 100 324 1156 4356 16900 66564
#λJ 34 58 106 202 394 778 1546

#iterJ 1 5 11 27 43 61 87
#λM 12 36 84 180 372 756 1524

#iterM 1 6 14 38 107 196 270
ϵrel 0.05036 0.01277 3.207e-3 8.028e-4 2.008e-4 5.012e-5 1.255e-5

p = 2

#DOF 64 144 400 1296 4624 17424 67600
#λJ 46 70 118 214 406 790 1556

#iterJ 2 6 11 27 812* 53 76
#λM 24 48 96 192 384 768 1536

#iterM 3 7 19 46 121 251 367
ϵrel 3.234e-3 2.300e-4 1.950e-5 1.706e-6 1.5035e-7* 1.327e-8 1.172e-9

p = 3

#DOF 100 196 484 1444 4900 17956
#λJ 58 82 130 226 418 802

#iterJ 4 6 12 26 41 60
#λM 36 60 108 204 396 780

#iterM 4 10 24 57 148 376
ϵrel 2.430e-4 3.672e-6 1.301e-7 4.913e-9 2.058e-10 9.015e-12

p = 4

#DOF 144 256 576 14 5184
#λJ 70 94 142 238 430

#iterJ 9 9 15 28 46
#λM 48 72 120 216 408

#iterM 9 16 32 77 193
ϵrel 1.574e-5 5.225e-7 1.269e-8 2.775e-10 6.109e-12

p = 5

#DOF 196 324 676 1764 5476
#λJ 82 106 154 250 442

#iterJ 21 19 21 37 61
#λM 60 84 132 228 420

#iterM 14 26 50 104 262
ϵrel 8.762e-7 5.540e-8 5.705e-10 6.165e-12 1.890e-13

Table B.1.: Data for the quad patch geometry with homogeneous Dirichlet data. Each column corresponds to
the used refinement level, starting with one. In the case marked with *, the relative error of the
jump operator is 8.251% larger than the one depicted here.

49

p = 1

#DOF 54 150 486 1734 6534 25350 99846
#λJ 48 80 144 272 528 1040 2064

#iterJ 7 20 43 65 93 138 201
#λM 16 48 112 240 496 1008 2032

#iterM 4 19 63 154 262 380 531
ϵrel,J 0.0106 2.340e-3 5.7619e-4 1.4441e-4 3.6219e-5 9.074e-6 2.271e-6
ϵrel,M 0.0170 3.944e-3 9.6209e-4 2.3848e-4 5.9452e-5 1.485e-5 3.711e-6
tmult
tsingle

0.69 0.56
p = 2

#DOF 96 216 600 1944 6936 26136 101400
#λJ 64 96 160 288 544 1056 2080

#iterJ 12 23 38 51 72 101 149
#λM 32 64 128 256 512 1024 2048

#iterM 12 29 78 198 330 502 681
ϵrel,J 1.720e-3 1.109e-4 1.048e-5 1.087e-6 1.202e-7 1.394e-8 1.671e-9
ϵrel,M 1.306e-3 0.986e-4 8.149e-6 7.093e-7 6.253e-8 5.526e-9 4.886e-10
tmult
tsingle

0.512 0.490 0.450
p = 3

#DOF 150 294 726 2166 7350 26934
#λJ 80 112 176 304 560 1072

#iterJ 18 28 44 59 75 97
#λM 48 80 144 272 528 1040

#iterM 18 42 101 260 487 766
ϵrel,J 2.688e-4 5.740e-6 1.585e-7 6.836e-9 3.800e-10 2.311e-11
ϵrel,M 1.852e-4 5.478e-6 1.310e-7 3.864e-9 1.421e-10 5.909e-12
tmult
tsingle

0.643 0.464 0.390 0.385
p = 4

#DOF 216 384 864 2400 7776
#λJ 96 128 192 320 576

#iterJ 25 37 53 66 86
#λM 64 96 160 288 544

#iterM 30 61 145 363 681
ϵrel,J 2.671e-5 1.600e-6 2.274e-8 4.325e-10 9.400e-12
ϵrel,M 2.432e-5 1.297e-6 1.808e-8 3.630e-10 7.913e-12
tmult
tsingle

0.66 0.49 0.37 0.37
p = 5

#DOF 294 486 1014 2646 8214
#λJ 112 144 208 336 592

#iterJ 40 288 71 88 110
#λM 80 112 176 304 560

#iterM 50 100 213 521 985
ϵrel,J 6.923e-6 1.392e-6 3.027e-9 3.657e-11 5.740e-13
ϵrel,M 3.837e-6 2.947e-7 2.091e-9 2.112e-11 2.703e-13
tmult
tsingle

0.71 0.52 0.43 0.37

Table B.2.: Data for the quarter sphere geometry with inhomogeneous Dirichlet data. Each column corre-
sponds to the used refinement level, starting with one.

50

p = 1

#DOF 144 400 1296 4624 17424 67600
#λJ 136 216 376 696 1336 2616

#iterJ 8 25 54 89 133 189
#λM 40 120 280 600 1240 2520

#iterM 5 25 80 192 345 535
ϵrel,J 0.018 4.968e-3 1.281e-3 3.243e-4 8.153e-5 2.043e-5
ϵrel,M 0.032 7.970e-3 1.994e-3 4.995e-4 1.250e-4 3.128e-5

p = 2

#DOF 256 576 1600 5184 18496 69696
#λJ 176 256 416 736 1376 2656

#iterJ 14 29 43 61 90 129
#λM 80 160 320 640 1280 2560

#iterM 13 33 99 235 431 642
ϵrel,J 1.146e-3 1.377e-4 1.538e-5 1.799e-6 2.175e-7 2.674e-8
ϵrel,M 1.152e-3 8.731e-5 7.122e-6 6.124e-7 5.361e-8 4.721e-9

p = 3

#DOF 400 784 1936 5776 19600 71824
#λJ 216 296 456 776 1416 2696

#iterJ 21 33 51 70 94 125
#λM 200 200 360 680 1320 2600

#iterM 52 52 128 318 641 982
ϵrel,J 3.381e-4 8.875e-6 2.341e-7 1.174e-8 7.330e-10 4.707e-11
ϵrel,M 2.063e-4 5.179e-6 1.140e-7 3.550e-9 1.380e-10 5.893e-12

p = 4

#DOF 576 1024 2304 6400 20736 73984
#λJ 256 336 496 816 1456 2736

#iterJ 29 42 62 79 101 133
#λM 160 240 400 720 1360 2640

#iterM 35 76 177 425 890 1419
ϵrel,J 3.035e-5 2.244e-6 2.855e-8 4.041e-10 1.111e-11 4.233e-13
ϵrel,M 2.097e-5 1.221e-6 1.512e-8 2.822e-10 6.145e-12 1.468e-13

p = 5

#DOF 784 1296 2704 7056 21904
#λJ 296 376 536 756 1496

#iterJ 44 752 78 1712* 122
#λM 200 280 440 760 1400

#iterM 64 125 256 601 1316
ϵrel,J 5.463e-6 3.111e-7 6.588e-9 2.037e-4* 1.570e-12
ϵrel,M 3.774e-6 2.762e-7 2.202e-9 2.257e-11 3.303e-13

Table B.3.: Data for the sphere geometry with inhomogeneous Dirichlet data. Each column corresponds to
the used refinement level, starting with one.

51

p = 1

#DOF 230 790 2918 11206 43910 173830
#λM 44 104 224 464 944 1904

#iterM 26 84 165 247 366 507
ϵrel,M 0.01515 3.495e-3 8.433e-4 2.081e-4 5.180e-5 1.293e-5

p = 2

#DOF 304 920 3160 11672 44824
#λM 60 120 240 480 960

#iterM 39 108 223 328 494
ϵrel,M 5.830e-4 4.820e-5 4.100e-6 3.517e-7 3.063e-8

Table B.4.: Data for the quarter sphere geometry with inhomogeneous Dirichlet data and patch-wise refine-
ment. Each column corresponds to the used refinement level, starting with one.

p = 3

#threads 1 2 3 4 5 6 7 8
tmult
tsingle

1 0.8106 0.4709 0.4056 0.4023 0.3638 0.3679 0.3431

Table B.5.: Ratio of parallel to sequential runtime for the sphere geometry with inhomogeneous Dirichlet
data and refinement level five.

52

Bibliography

[1] AMD Ryzen™ 7 5800H. url: https://www.amd.com/en/product/10821.
[2] K. E. Atkinson. Spherical harmonics and approximations on the unit sphere: An introduction. Vol. 2044.

Lecture notes in mathematics. Berlin: Springer, 2012.
[3] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. “Isogeometric Analysis:

Approximation, Stability and error estimates for h-refined meshes”. In: Mathematical Models and
Methods in Applied Sciences 16.07 (2006), pp. 1031–1090.

[4] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5. Aufl.
2013. Masterclass. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[5] E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. “Isogeometric mortar methods”. In: Computer
Methods in Applied Mechanics and Engineering 284 (2015), pp. 292–319.

[6] A. Buffa and G. Sangalli, eds. IsoGeometric analysis: A new paradigm in the numerical approximation of
PDEs : Cetraro, Italy 2012. Vol. 2161. Lecture notes in mathematics CIME Foundation subseries. Cham:
Springer, 2016.

[7] B. Butrylo, F. Musy, L. Nicolas, R. Perrussel, R. Scorretti, and C. Vollaire. “A survey of parallel solvers for
the finite element method in computational electromagnetics”. In: COMPEL - The international journal
for computation and mathematics in electrical and electronic engineering 23.2 (2004), pp. 531–546.

[8] J. A. Cottrell. Isogeometric analysis: Toward integration of CAD and FEA. Chichester, West Sussex, U.K
and Hoboken, NJ: Wiley, 2009.

[9] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods: Algorithms, theory,
and parallel implementation. Vol. 144. Other titles in applied mathematics. Philadelphia: SIAM Society
for Industrial and Applied Mathematics, 2015.

[10] J. Dölz, H. Harbrecht, S. Kurz, M. Multerer, S. Schöps, and F. Wolf. “Bembel: The fast isogeometric
boundary element C++ library for Laplace, Helmholtz, and electric wave equation”. In: (2021).

[11] J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. “A Fast Isogeometric BEM for the Three Dimen-
sional Laplace- and Helmholtz Problems”. In: Computer Methods in Applied Mechanics and Engineering
330 (2018), pp. 83–101.

[12] G. Dziuk and C. M. Elliott. “Finite element methods for surface PDEs”. In: Acta Numerica 22 (2013),
pp. 289–396.

[13] J. W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.
[14] Eigen andmulti-threading. url: https://eigen.tuxfamily.org/dox/TopicMultiThreading.

html.
[15] A. Ern and J.-L. Guermond. Finite Elements I: Approximation and Interpolation. Vol. volume 72. Springer

eBook Collection. Cham: Springer, 2021.

53

https://www.amd.com/en/product/10821
https://eigen.tuxfamily.org/dox/TopicMultiThreading.html
https://eigen.tuxfamily.org/dox/TopicMultiThreading.html

[16] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. “FETI-DP: a dual-primal unified FETI
method?part I: A faster alternative to the two-level FETI method”. In: International Journal for Numerical
Methods in Engineering 50.7 (2001), pp. 1523–1544.

[17] C. Farhat, J. Mandel, and F. X. Roux. “Optimal convergence properties of the FETI domain decomposition
method”. In: Computer Methods in Applied Mechanics and Engineering 115.3-4 (1994), pp. 365–385.

[18] C. Farhat and F.-X. Roux. “Amethod of finite element tearing and interconnecting and its parallel solution
algorithm”. In: International Journal for Numerical Methods in Engineering 32.6 (1991), pp. 1205–1227.

[19] G. Guennebaud, B. Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.org.
[20] T. Hirschler, R. Bouclier, D. Dureisseix, A. Duval, T. Elguedj, and J. Morlier. “A dual domain decomposi-

tion algorithm for the analysis of non-conforming isogeometric Kirchhoff–Love shells”. In: Computer
Methods in Applied Mechanics and Engineering 357 (2019).

[21] T. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite elements, NURBS, exact
geometry and mesh refinement”. In: Computer Methods in Applied Mechanics and Engineering 194.39-41
(2005), pp. 4135–4195.

[22] J. Jost. Riemannian Geometry and Geometric Analysis. 7th ed. 2017. SpringerLink Bücher. Cham:
Springer, 2017.

[23] B. Jüttler and B. Simeon, eds. Isogeometric Analysis and Applications 2014. Vol. 107. Lecture Notes in
Computational Science and Engineering. Cham: Springer International Publishing, 2015.

[24] S. K. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. “IETI - Isogeometric Tearing and Interconnecting”.
In: Computer Methods in Applied Mechanics and Engineering 247-248.11 (2012), pp. 201–215.

[25] W. MacLean and W. McLean. Strongly elliptic systems and boundary integral equations. 1. publ. Cam-
bridge: Cambridge University Press, 2000.

[26] F. Magoulès, F.-X. Roux, and G. Houzeaux, eds. Parallel Scientific Computing. Hoboken, NJ, USA: John
Wiley & Sons, Inc, 2015.

[27] P. Monk. Finite element methods for Maxwell’s equations. Reprinted. Oxford science publications. Oxford:
Clarendon Press, 2006.

[28] M. Nolte. “Mortaring for the Isogeometric Boundary Element Method”. MA thesis. Technische Universität
Darmstadt, 2021.

[29] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.0. 2008.
[30] L. Piegl. The NURBS Book. Second Edition. Monographs in Visual Communication. Berlin and Heidelberg:

Springer, 1997.
[31] T. K. Rusch. “Isogeometric Analysis on Multiple Patches for Aerospace Applications”. 2018.
[32] Y. Saad. Iterative methods for sparse linear systems. 2nd ed. Vol. 82. Other titles in applied mathematics.

Philadelphia, Pa.: Society for Industrial and Applied Mathematics (SIAM 3600 Market Street Floor 6
Philadelphia PA 19104), 2003.

[33] M. Spink, D. Claxton, C. de Falco, and R. Vazquez. nurbs package. url: https://octave.sourceforge.
io/nurbs.

[34] N. Vukašinović and J. Duhovnik. Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and
Re-engineering. SpringerLink Bücher. Cham: Springer International Publishing, 2019.

[35] J. Whiteley. Finite Element Methods: A Practical Guide. Springer eBook Collection Engineering. Cham:
Springer, 2017.

54

http://eigen.tuxfamily.org
https://octave.sourceforge.io/nurbs
https://octave.sourceforge.io/nurbs

[36] F. Wolf. Analysis and Implementation of Isogeometric Boundary Elements for Electromagnetism. Darmstadt:
Universitäts- und Landesbibliothek Darmstadt, 2020.

55

	Introduction
	Motivation
	Structure of the Document

	Foundations
	Sobolev Spaces
	Surface Partial Differential Equations
	Finite Element Methods
	Isogeometric Analysis
	Domain Decomposition
	The Stiffness Matrix
	The Jump Operator
	Mortar Method

	Saddle Point Formulation

	Dual-Primal IETI
	Primal and Remaining Degrees of Freedom
	Essential Boundary Conditions
	Dual Problem
	Preconditioner
	IETI-DP Algorithm

	Implementation
	BlockMatrix Struct
	Dirichlet Data
	Jump Operator Class
	Block Matrix Operator Class
	IETI-DP Routine
	Mortaring and Local Refinement

	Results
	Quad Patch Geometry
	Quarter Sphere Geometry
	Sphere Geometry

	Final Remarks
	Summary
	Further Work

	Non-Uniform-Rational-B-Splines
	Data

